Reconstruction of continuous-time systems from their discretizations

نویسندگان

  • Tongwen Chen
  • Daniel E. Miller
چکیده

The so-called ZOH discretization or step-invariant transformation is not one-to-one and hence one can not recover the continuous-time system from its discretized model without further information. Here we show that it is possible to reconstruct a continuous-time rational transfer function based on discretized models at several, suitably chosen, sampling rates. The results also relate to the problem of reconstructing continuous-time signals with rational Laplace transforms from their sampled versions at diierent rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler’s discretization, dynamic equivalence and linearization of control systems

It is shown that two continuous-time control systems are dynamically feedback equivalent if and only if their Euler’s discretizations are h-dynamically feedback equivalent for every discretization step h. In particular, a continuous-time system is dynamically feedback linearizable if and only if its Euler’s discretization is h-dynamically feedback linearizable for every h > 0. The proofs of the...

متن کامل

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

On Integrability of Hirota-Kimura-Type Discretizations: Experimental Study of the Discrete Clebsch System

R. Hirota and K. Kimura discovered integrable discretizations of the Euler and the Lagrange tops, given by birational maps. Their method is a specialization to the integrable context of a general discretization scheme introduced by W. Kahan and applicable to any vector field with a quadratic dependence on phase variables. According to a proposal by T. Ratiu, discretizations of the Hirota-Kimura...

متن کامل

Unsteady Output-Based Adaptation Using Continuous-in-Time Adjoints

We present a method for estimating spatial and temporal numerical errors in scalar outputs of unsteady fluid dynamics simulations using a continuous-in-time adjoint solution and general time-integration methods. A continuous formulation decouples the primal and adjoint temporal discretizations and allows the use of standard time-integration schemes for the adjoint. For non-variational methods, ...

متن کامل

Hermite Weno Schemes with Lax-wendroff Type Time Discretizations for Hamilton-jacobi Equations

In this paper, we use Hermite weighted essentially non-oscillatory (HWENO) schemes with a Lax-Wendroff time discretization procedure, termed HWENO-LW schemes, to solve Hamilton-Jacobi equations. The idea of the reconstruction in the HWENO schemes comes from the original WENO schemes, however both the function and its first derivative values are evolved in time and are used in the reconstruction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Automat. Contr.

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2000